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Abstract
The Deaf and Hard of Hearing (D/HH) community faces significant
communication gaps, limiting their full participation in everyday
settings such as education and healthcare. This study designed an
Artificial Intelligence (AI)-driven bi-directional communication sys-
tem and demonstrated its efficiency via two usability tests of D/HH
individuals to narrow those gaps. The bi-directional communication
system comprised two major components: Sign Language Recog-
nition (SLR) and Sign Language Production (SLP). Usability tests
were conducted to survey D/HH individuals’ communication pref-
erences on 1) bi-directional system versus one-way system (only
provided SLP) versus zero-way system (typing back and forth); 2)
cartoon avatars versus human-like avatars. Results collected from
66 D/HH individuals showed that: 1) AI-driven communication sys-
tems should provide bi-directional support; 2) AI-generated avatars
should be human-like. This work offered valuable insights for future
bi-directional communication system design and SLP development
for D/HH community.

CCS Concepts
• Human-centered computing • Accessibility • Accessibility
systems and tools;
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1 INTRODUCTION
Deaf and Hard of Hearing (D/HH) refers to individuals with varying
degrees of hearing loss [45]. There are 48 million D/HH individuals
in America and 466 million worldwide [10, 22]. Many D/HH Ameri-
cans’ first and primary language is American Sign Language (ASL),
a language distinct from English, expressed through hands, body
language, and facial expressions. Although ASL and English are
two entirely different languages [36], D/HH individuals are often
expected to navigate daily life using English due to a prevalent
misconception that ASL is a visual representation of English. The
limited access to ASL coupled with the expectation to rely on Eng-
lish leads to profound challenges, particularly in education. One
result of this limited accessibility is the disparity in reading level be-
tween D/HH high school graduates and their hearing counterparts:
20% of Deaf high school graduates have English reading skills at or
below second-grade level, while 33% read between second-grade
and fourth-grade levels [9]. These educational disparities, stem-
ming from systemic lack of ASL access, perpetuate communication
barriers for D/HH individuals throughout their lives.

Communication options for D/HH individuals typically rely on
English-centric methods or sign language interpretation. Despite
being the gold standard for Deaf individuals, interpreter access is
declining due to scarcity: although there are approximately 9million
ASL signers within the US [20], only 10,000 certified interpreters[39]
exist. These barriers affect D/HH individuals’ social interactions,
education, and healthcare access, leading to significant disparities.
There is a 16% employment gap (54% of D/HH individuals employed
vs. 70% of hearing individuals), a 15% education gap (18% of D/HH
individuals with bachelor’s degrees vs. 33% of hearing individuals),
and a 22.1% labor force participation disparity (42.9% of D/HH
individuals not participating vs. 20.8% of hearing individuals) [17].
These systemic inequalities hinder millions of Americans from
reaching their full potential due to addressable communication
barriers.

Driven by advancements in Artificial Intelligence (AI), Sign-
Speak1 pioneered a bi-directional communication system that com-
bines Sign Language Recognition (SLR) and Sign Language Pro-
duction (SLP), inspired by our personal experiences with systemic

1A startup whose AI-powered language software recognizes ASL and translates it into
spoken words and vice versa
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barriers facing the D/HH community. This case study examined
these two key technologies that emulate different interpretation
functions: SLR, which translates sign language captured via camera
into voice/text, and SLP, which converts spoken language into a real-
time visual sign language output. Our goal is to provide functional
equivalence in technology access for D/HH individuals, addressing
not only the communication gap, but also the exclusion of signers
from voice-activated systems such as virtual assistants, smart home
devices, and automated customer services. By providing functional
equivalence, we aim to be another tool in our users’ accessibility
toolkit. To become a valuable tool for the community, we believed
that incorporating input from D/HH users is crucial in designing
systems that effectively meet their communication needs. By do-
ing so, we can enhance user satisfaction and encourage broader
adoption of these technologies, especially given the challenges in
balancing accuracy, user experience, and practical implementation.

To address these complexities, we crafted this case study with the
following objectives: 1) described the development of automated in-
terpretation systems; 2) analyzed optimal design strategies for these
systems; 3) presented practical guidance for the ‘optimal’ design of
these systems based on our findings. We hoped this study would
highlight effective development methods and inspire continued
innovation in the field. The rest of this case study is organized as
follows. Section 2 reviews the background related to topics. Section
3 presents bi-directional system design. Section 4 details the case
study design. Section 5 illustrates results. Section 6 summarizes
contributions, concludes the study, and discusses limitations and
future research directions.

2 RELATEDWORK
This section examined prior research relevant to the central themes
of the current study and outlines the motivations behind our key
innovations. Section 2.1 discusses how SLR are researched and used
in the community. Section 2.2 introduces previous works on SLP.
Finally, Section 2.3 reviews the background of system usability in
this domain.

2.1 Sign Language Recognition Systems
SLR refers to the use of computer vision and natural language
processing techniques to interpret and understand sign language
automatically [30]. It is a growing field within Human-computer
Interaction, aiming to narrow the communication gap between
D/HH community and hearing individuals for various contexts,
such as facilitating communication with providers [15], learning
mathematics [1], and enhancing accessibility in public services
(e,g., bank) [25]. Additionally, this technology can help achieve
functional equivalence by being integrated into platforms with
voice recognition capabilities.

Recent advancements in machine learning and natural language
processing have fostered significant interest in developing auto-
mated SLR systems that can facilitate real-time translation between
sign language and spoken or written languages for the D/HH com-
munity. For example, Rastgoo et al. [29] proposed a real-time iso-
lated hand sign language recognition model that included a single
shot detector, 2-dimensional CNN, singular value decomposition,

and Long Short-Term Memory (LSTM) to extract and process dis-
criminative features from 3-dimensional hand key-points. They
confirmed that the model achieved competitive results in both
accuracy and recognition time on four benchmark datasets (e.g.,
RKS-PERSIANSIGN (99.5 ± 0.04) [28]), demonstrating its efficiency.
Furthermore, Lee et al. [18] designed an application that included a
LEAP motion controller for real-time ASL recognition in a whack-
a-mole game format to improve the effectiveness of ASL learning.
An LSTM combined with k-Nearest-Neighbor was used to classify
static and dynamic ASL signs based on extracted features such as
finger angles, distances, and sphere radius. Results showed that the
model achieved an average recognition accuracy of 91.82%. Sharma
et al. [32] employed a 3D Convolutional Neural Network-based
model to recognize dynamic signs in ASL from volumetric video
data. They demonstrated that the proposed approach outperformed
the existing novel models (i.e., 3.7% improvement in precision).

However, it is important to note that these successful approaches
have all either been constrained (limited vocabulary size (< 100)) or
isolated (the model classifies individual signs rather than translat-
ing complete signed phrases into English). In addition, such uncon-
strained continuous SLR systems trained on datasets like OpenASL
[34] reported BLEU scores not exceeding 10 [19, 34], indicating in-
sufficient accuracy for practical use. Most studies have limited their
evaluation to validation sets, often neglecting real-world testing
with D/HH signers and thorough analysis of human factors. Few
attempts have assessed automated SLR systems’ feasibility in real-
life settings, heavily relying on Wizard of Oz techniques [38] for
human-computer interaction components. Therefore, we developed
an unconstrained and continuous SLR system that enables D/HH
individuals to sign freely using any device and tested the system’s
practicality with D/HH community in real-world scenarios.

2.2 Sign Language Production: Avatar
Rendering

In bidirectional systems, SLP is crucial as D/HH individuals have
varied English proficiency [5].In SLP, avatar rendering is a graphi-
cal representation of human figures to visually depict sign language
[2]. While most common approaches use 3D rendering software to
generate models replicating hand movements [6], facial expressions
[12, 44], and body language [16, 33], our system directly generates
image sequences. We focused on systems capable of generating
signed content from text, ensuring broad applicability beyond sim-
ple motion sequence masking.

Advancements in AI have made avatar rendering widely ap-
plied and have shown promising acceptance results in ASL. These
approaches can be divided into models driven by 3D rendering
systems, which we term cartoon-based avatars, and systems driven
by generative image modeling (directly regressing to images from
some condition set), which we term human-like [41]. For example,
Quandt et al. [26] introduced the embodied learning-based Signing
Avatars and Immersive Learning (SAIL) system that rendering a
high-quality cartoon signer by tracking gestures using the LEAP
Motion system, which aims to teach ASL in the virtual reality envi-
ronment. Their usability test disclosed that users reacted positively
to the overall experiences and reported positive feedback about
the potential for learning ASL through the SAIL system. Xu et al.
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[43] applied a transformer-based Conditional Variational Autoen-
coder to generate ASL fingerspelling alphabets and evaluated it
on three different mainstream video-based human representations:
two-stream inflated 3D ConvNet, 3D landmarks of body joints, and
rotation matrices of body joints. Results showed that the best ASL
alphabet signing generation was achieved using rotation matri-
ces of the upper body joints and signing hand. Baltatzis et al. [3]
proposed a diffusion-based SLP model which generated motion
sequences and rendered them via a 3D rendering system. Their
model was trained on a large-scale dataset of 3D dynamic ASL
sign sequences with associated text transcripts. They argued that
the proposed method considerably outperformed other methods
of SLP in generating dynamic sequences of 3D avatars from an
unconstrained domain of discourse using a diffusion process on an
anatomically informed graph neural network-based on the SMPL-X
skeleton [24].

Previous research have had most commonly advanced SLP for
D/HH community using cartoon or 3D-rendering based techniques
rather than image-based human-like avatars. It is currently un-
known if cartoon-based models fully capture the nuances and ex-
pressiveness of natural signing. The acceptability and usability of
avatar rendering in practical applications for D/HH community
remain understudied, leaving questions about expressiveness and
user satisfaction unanswered. Our study addressed these gaps by
developing a human-like sign language avatar and investigating
user preferences to improve SLP technology for DHH community.
We used this SLP system to complement the SLR technology.

2.3 Sign Language Recognition and Sign
Language Production: System Usability

System Usability refers to the measurement of how easy and effi-
cient a system is to use [40] by users. Usability is crucial for D/HH
adoption of SLR and SLP systems to communicate with hearing
individuals. Three key factors contribute to usability success:

• Ease of Use. SLR and SLP systems require intuitive inter-
faces with minimal learning curves for effective adoption.
Key features include simple navigation, customizable set-
tings, and accessible feedback mechanisms [31]. Systems
should accommodate D/HH users’ visual and signing com-
munication preferences. Most SLR and SLP assistive tech-
nologies for D/HH communication remain in prototype phases
[8], withHandTalk being a notable exception, offering text/audio
to ASL/Brazilian Sign Language translation [11].

• Real-time Performance. Real-time performance is crucial
for SLR and SLP systems in D/HH daily communication.
These systems must balance minimal latency with maximal
accuracy to maintain natural conversation flow and user
satisfaction [23]. For example, Jolly et al. [37] found that real-
time captioning, despite initial barriers like lag, effectively
aided D/HH college students in accessing information and
facilitating classroom communication.

• System Reliability. Reliable SLR and SLP systems must
accurately interpret both from and into ASL. Expert hu-
man interpreters achieve similar accuracy in English-to-ASL
(72.7%) and ASL-to-English (75.7%) translations [21]. Auto-
mated systems should aim for comparable accuracy to ensure

user satisfaction and trust. For example, Boudreault et al. [4]
demonstrated that feature customizability and placement are
crucial for successful closed-interpreting implementations,
emphasizing the importance of reliable system performance
across diverse communication scenarios.

Few studies have explored the real-world usability of combined
SLR and SLP systems, limiting our understanding of their usability
in daily contexts. This knowledge gap impedes the development
of truly accessible and user-friendly technologies for D/HH indi-
viduals. Our study addressed this limitation by conducting compre-
hensive usability tests of both systems in real-life settings, aiming
to enhance the design of SLR and SLP systems for effective daily
communication between D/HH and hearing individuals.

3 BI-DIRECTIONAL SYSTEM DESIGN
3.1 Bi-directional System Framework
To address the aforementioned research gaps, we developed a bi-
directional system (i.e., combined SLR and SLP) to model real-time
communication between D/HH and hearing individuals. Fig. 1 illus-
trates the system architecture with featuring bi-directional infor-
mation flow: sign language from D/HH users was recognized and
translated for hearing individuals as spoken language, while spo-
ken language was rendered into sign language via an image-based
digital human-like avatar. This system enables clear and accurate
communication between D/HH and hearing individuals.

Deaf
Individuals

Hearing
Individuals

Sign Language Recognition (SLR)

Sign Language Production (SLP)

Figure 1: An overview of bi-directional system architecture.

3.2 Bi-directional System Development
3.2.1 Data collection and preparation. We have collected a dataset
of ASL signing comprised of sentences and signs paired with the
associated English. From this, we proceed with three feature extrac-
tion steps:

• Annotation of Gloss: We annotated each sequence with
the gloss it contains.

• Annotation of Linguistic Information: We annotated
each gloss and each sequence with linguistic information.

• Extraction of Low-Dimension Data Representation We
extracted a low-dimensional feature representation from
each data point containing pose, resenet features, and cropped
areas of interest (face, hands).

3.2.2 Bi-directional system model design. We obtained dataset 𝐷 =

{(𝑙, 𝑥, 𝑔, 𝑒, 𝑓 )𝑖 }𝑁𝑖=1 for linguistic, low dimensional representation,
pose, gloss, and English features respectively. Examining each space
2: 𝑙 ∈ 𝐿 ⊂ L∗ represents a sequence of linguistic information.

2for brevity, we abused the Kleeny star operator ∗ to also operate over continuous
spaces. 𝑋 ∗ =

⋃
𝑖≥0 𝑋

𝑖
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𝑥 ∈ 𝑋 ⊂ R𝐾
∗ represents the low-dimensional data representation,

containing a concatenation of extracted pose, extracted resenet,
and dimensionality-reduced per-frame cropped regions of interest.
The per-frame cropped region of interest is important as motion
blur caused by the high-velocity motion in signing frequently pre-
vents the pose prediction model from functioning3; 𝑔 ∈ 𝐺 ⊂ V∗

𝐺
represents the strings of gloss. Note that we primarily relied on
𝐿 to capture the broad morphological4 variations of root-signs;
𝑒 ∈ 𝐸 ⊂ V∗

𝐸
represents strings in the vocabulary of English. Note

that these are not words, but rather tokens; and, 𝑓 ∈ 𝐹 ⊂ R𝐾×𝐾 ∗

represents 𝐾 by 𝐾 frames.

3.3 Sign Language Recognition System Design
Due to the high dimensional nature of both input space (raw videos
and analog), and target space, paired with limited data, we opted to
add inductive bias to our models enabling them to converge prior to
overfitting. Therefore, we utilized a cascaded series of models which
were trained jointly. In particular, we aimed to map low-level frame
information to English through a cascade of sub-models. Following
our feature extractor, we applied a sign boundary detection model
trained to recognize annotated sign boundaries: 𝑠𝜁 : 𝑋 → [0, 1]∗.
These boundaries were applied softly through an attention map
to allow an isolated sign recognition model: 𝑟𝜂 : 𝑋 × 𝐴 → 𝐿 ×𝐺
(where A is the set of all cross-attention maps) to independently
attend to each sign. Critically, this isolated sign recognition model
not only predicted the gloss, but also the raw linguistic phonemes
(as this carries inflectional information), which was trained on
cropped dataset samples to ensure the model was robust to sign
boundary errors and ASL assimilation. The isolated signs were
passed through a conditional random field to smooth the output.
Finally, the resultant gloss and linguistic information was passed
through a Transformer model which translated the results into
English. By training within this paradigm, our model was able
to achieve a SacreBLEU of 55.1 ± 6.67 on unseen test datapoints
(for context, the BLEU of human interpreters were measured to be
27.6 ± 5.26).5

3.4 Sign Language Production System Design
We utilized a multi-step approach to generate the human-like avatar
for the SLP representation.

3.4.1 Generation of pose information from text. We initially re-
gressed from English to a written sign language analog. This step
preceded pose generation, as it reduced output variance, thereby
simplifying the subsequent production of motion sequences.

We learned 𝑓𝜙 : 𝐸 → 𝐺 × 𝐿 via 𝑓𝜙 (the gloss and linguistic
features). Note that we not only regressed to the gloss, as gloss
alone typically omits many crucial morphological features. This
model can be done via a Seq2Seq model such as a Transformer [47],

3linguistically, as handshapes are frequently changed during Movement portions (see
Movement-Hold model), it is crucial to capture the handshape changes
4while this set only captures the phonologic details, as morphemes are representable as
sets of sequences of phonemes, it serves dual role to carry morphological data through
the system.
5our test datapoints were structured so no signer in the test dataset was trained on. In
addition, all entries required to have no more than a 4-gram overlap with any sentence
in our training dataset.

and trained via cross entropy as both the gloss space and linguistic
phonetic space were discrete.

3.4.2 Generation of pose information from written sign analog. Fol-
lowing this, We mapped from our gloss-linguistic sign analog space
to pose data using a function 𝑔𝜓 : 𝐺 × 𝐿 → 𝑋 , parameterized by a
Transformer with𝜓 . The model outputted pose 𝑝𝑖 and a terminator
signal 𝑇 , with generation terminating when 𝑇 > 0.5. We employed
a binary cross-entropy loss for 𝑇 and mean squared error for 𝑋 .

3.4.3 Generation of frames from pose information. The human-like
avatar employed a deepfake technique using a conditional GAN
[35] that conditioned on pose information. We unrolled frames and
extracted features (𝑓 , 𝑥), then trained the GAN with generator 𝐺𝜌
and discriminator 𝐷𝜃 , learning the inverse problem to low-level
feature extraction. GANs were chosen over diffusion models for
their real-time generation capability, as diffusion models’ iterative
process makes them significantly slower despite superior image
fidelity.

We trained SLR and SLP models using an Adam optimizer with
a learning rate of 1e-5 (batch size = 128, epochs = 100) on NVIDIA
H100 GPUs.

4 DESIGN OF CASE STUDY
This case study comprised two Institutional Review Board (IRB)-
exempted hybrid experiments usability tests evaluating the prac-
ticality of the combined SLR and SLP system as daily tools for
the D/HH community. We aimed to assess the overall systems’
effectiveness and user experiences in real-world applications.

Recruitment flyers for Deaf individuals were distributed through
various channels (e.g., social media). The inclusion criteria were as
follows: D/HH participants should be at least 18 years old, use ASL
as their primary language with sufficient proficiency, and should
not have any conditions which would impact their ability to interact
with our system (e.g. Cerebral Palsy). Interested D/HH individuals
contacted the research team for voluntary participation. Partici-
pants completed a screening process to determine eligibility. Eligi-
ble participants provided informed consent. The Deaf researcher
thoroughly explained the study, potential risks, and benefits. Each
participant also provided demographic (e.g., age) information and
was later compensated with a $25 gift card.

4.1 Usability Test 1: Bi-directional
Communication System

An ideal AI-powered automated interpretation system would likely
be bi-directional [42], facilitating seamless communication between
D/HH and hearing individuals. Until our study, however, limited
research had been done to demonstrate this.

The bi-directional system was hypothesized to be ideal for sup-
porting natural, interactive communication with inclusive partici-
pation, surpassing open-loop SLR or SLP systems [13]. However,
most bi-directional systems have remained in prototype phases
with their feasibility for daily closed-loop communication between
D/HH and hearing communities largely unexplored. Therefore,
Test 1 investigated the technical performance and practical feasibil-
ity of our bi-directional system and compared it with: zero-way
System (text-based (e.g., using phone) communication for both
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D/HH and hearing individuals); one-way system (avatar rendering
for hearing-to-D/HH communication; text-based input for D/HH-
to-hearing communication). Given that many D/HH individuals
mainly used zero-way system for communication purposes, we used
it as the baseline to compare with one-way and bi-directional sys-
tems. This helped us determine which communication system could
provide a systemic benefit over the current status quo. Therefore,
we conducted a usability test to assess communication effectiveness
across systems. Participants tested three systems in random order.
For each system, participants communicated with a hearing partic-
ipant on randomly selected topics for 5-8 minutes, followed by a
custom e-survey based on System Usability Scale (SUS)[14]. The
e-survey comprised six 10-point6 Likert-scale questions (such as
’This system was efficient.’ and ’This system met your communica-
tion needs.’) assessing efficiency and communication effectiveness,
a ranking question for overall preference, and included an open-
ended question for qualitative feedback.

To mitigate locality bias, as opinions from the epicenter of the
D/HH community may differ from regions with less accessibility
we designed a web-based testing interface. The interface was based
on Randomized Complete Block Design [46] shown in Fig. 3, con-
taining two distinct components to ensure smooth communication.
Toggles on the left side were used to allow participants to swap
between systems (B: bi-directional system; O: one-way system; Z:
zero-way system) and the e-survey (’S’). For online participants, a
video conferencing platform was integrated with the interface to
ensure participants and researchers could see each other.

This interface ensured smooth communication between SLR and
SLP. For SLR, the interface included a user self-view for positioning
adjustment and a multi-state button ("Start", "Stop", "Redo") control-
ling the recognition engine. A loading icon indicates processing,
with results displayed in a text box after 1-2 seconds. Once the text
shows up, the user could submit the text by pressing the check
mark, edit the text by typing into the text box, or redo their signing
by pressing the "redo" button. For SLP, the system automatically
triggered the avatar to sign when a hearing person speaks, dis-
playing a "Translating..." icon during the rendering. Unlike D/HH
users, hearing individuals have limited control over output, as the
system was designed for the interface to face the D/HH users. This
design, leveraged well-established speech recognition technology.
Both hearing and D/HH users can mute the microphone using the
mic button. Some examples of the UI functioning can be seen in
supplemental materials.

4.2 Usability Test 2: Human-like Avatar vs.
Cartoon Avatar

Previous studies on signing avatar preferences used interpreter
videos as proxies for human-like avatars [27], potentially over-
looking unique factors such as artifacting and unnatural signing.
We aimed to re-examine these findings using an actual human-
like avatar. We hypothesized that human-like avatars will be more
comprehensible due to their resemblance to everyday D/HH com-
munication. Therefore, we conducted a survey assessing preference
scores for different avatar types.

61: strongly disagree; 10: strongly agree

To explore D/HH individuals’ avatar preference, we showed them
a cartoon avatar7 (Fig. 3 (a)) and a Sign-Speak8 human-like avatar
(Fig. 3 (b)). Long (∼4 sentences) and short (1 sentence) excerpts
were randomly selected from a dataset of 10 each and rendered into
signing videos using two distinct avatars. Participants viewed each
of the two randomly selected sentences rendered onto each avatar
to mitigate order effects. Users provided feedback via a custom
questionnaire adapted from the System usability scale (SUS) [14].
For each video, four 6-point9 Likert-scale questions assessed aspects
such as comprehensibility (e.g., The signing in the video was easy
to understand) and understandability (i.e., if users could understand
the avatar). Participants also ranked their overall signing avatar
preference and offered qualitative feedback.

5 RESULTS
Eighteen (Age (years): 30.85 ± 12.54 ) and forty-eight (Age (years):
30.85 ± 12.54 ) D/HH individuals participated in Test 1 and 2, re-
spectively. Based on these case studies, we have identified essential
guidelines for developing and implementing this technology. Sig-
nificance level of 𝑝 < 0.05 was applied.

5.1 System Preference
Table 1 shows results of system preference analysis using pair-
wise one-way binomial tests revealed no significant preference
for one-way over zero-way systems, but significant preference for
bi-directional system over both zero-way (𝑝 = 0.02) and one-way
(𝑝 < 0.01) systems. These findings rejected the null hypothesis
that favors zero-way over bi-directional systems. Bayesian analysis
(Bayes factor with Jeffery’s prior) yielded an odds factor of 4.63,
indicating moderate evidence that one way systems offer no sig-
nificant advantage over text-based communication. The proposed
bi-directional approach was preferred by 78% of users over the
zero-way system, with either one-way system or the bi-directional
system being preferred over the zero-way system by 88% of the
users. Participants rated the bi-directional system highly for ease
of learning (8.83±1.83), meeting communication needs (8.61±1.77),
and willingness to use if offered (8.33±2.47)10.

In summary, we found that 1) AI communication systems
should provide bi-directional support in ASL; 2) Merely pro-
viding one direction is no better than requiring individuals
to write back and forth.

5.2 Avatar Preference
Participants reported SLP accuracy of 78% ± 1.7% for our system
and 61%± 2.4% for HandTalk, indicating that our SLP is comparable
to expert human interpreters ([21] reported an accuracy of 72.7
for expert human interpreters working into ASL). Avatar prefer-
ence scores were binary, with users choosing exactly one avatar.
Each user’s rankings were independent and identically distributed.

7We used Handtalk’s avatar as they are commercially used
8A startup whose AI-powered language software recognizes ASL and translates it into
spoken words and vice versa
91: strongly disagree; 6: strongly agree
101: strongly disagree; 10: strongly agree
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Figure 2: An overview of interface design

Table 1: Results of binomial tests with the alternative hypothesis that the row entry is preferred to the column entry. Statistically
significant results are bolded. These results indicate that the two-way system was preferred over both the zero-way and one-way
system. Additionally, the zero-way and one-way system were not preferable to any other system.

Row > Column Zero-way system One-way system Bi-directional system
Zero-way system 1.00 0.88 1.00
One-way system 0.24 1.00 1.00

Bi-directional system 0.02 <.01 1.00

(a) (b)

Figure 3: Demonstration of avatar style: (a) cartoon, (b) hu-
man. The human in (b) consented andwas face-swappedwith
a non-existent person.

Consequently, we performed a binomial test with the alternative hy-
pothesis that users favored the human-like avatar. The test resulted
in p < 0.01, allowing us to reject the null hypothesis. We conclude
that human-like avatars are statistically significantly preferred over
cartoon avatars. Therefore, we assert that AI avatars SHOULD
be human-like to be broadly accepted by D/HH community.

6 CONCLUSIONS AND DISCUSSION
This pilot case study designed and evaluated a bi-directional com-
munication system, demonstrating its superiority over zero-way

and one-way systems through two usability tests. Results revealed
D/HH participants’ preference for human-like avatars over car-
toon avatars. Our findings have significant implications for AI-
powered interpretation systems bridging communication gaps be-
tween D/HH and hearing individuals. For example, we found it is
significant for prioritizing bi-directional communication capabili-
ties and enhancing SLR technologies for natural ASL interpretation.
Integrating and improving human-like avatars in SLP systems is cru-
cial for better replicating ASL intricacies. Adopting user-centered
design approaches, involving D/HH individuals throughout devel-
opment, ensures technologies meet specific needs and preferences.
This understanding matches the U.S. Disability Advisory Commit-
tee’s opinions: “without the ability to have other participants’ audio
converted to sign language and to have their own sign language
converted to speech, a person who is Deaf or Hard of Hearing [...]
may not be able to effectively participate in video conferences [or
conversations]” [7]. Their statement encourages innovative efforts
to include sign language services to meet the needs and require-
ments of daily life. Though some preexisting approaches to close
the communication gap between D/HH and hearing people hold
promise, it is clear that SLR or SLP alone will fail to do so effectively.
To fully bridge the communication gap, a bi-directional system with
a human-like avatar is essential.

We found feedback fromD/HH individuals throughout the usabil-
ity test to be invaluable, and highly encouraged such consultations
to become industry standard. Deaf leadership is additionally para-
mount when conducting these studies as collecting raw feedback
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obtained in this study was only possible due to involvement from
our Deaf researcher.

To the best of our knowledge, this case study was the first work
to answer usability questions for D/HH community using a bi-
directional communication system. Our contributions included the
development of an automated sign language interpretation system,
evaluating and comparing design strategies to determine optimal
approaches, and providing evidence-based recommendations for
the design and implementation of effective automated interpreta-
tion systems. These insights aim to guide future D/HH accessibility
innovation efforts, emphasizing the importance of designing with,
rather than for, the D/HH community.

While our study offers valuable findings, it has limitations. The
studies focused on short-term interactions and immediate user
preferences rather than long-term usability or sustained impact.
Long-term engagement with the system might reveal different
usability challenges, learning curves, evolving preferences, and the
extent to which latency affects practical use in real-world scenarios.
In addition, system latency (< 5s) may also have impacted user
satisfaction, causing deployment challenges such as handling large
user bases and cross-platform compatibility.

Our advancements showed promise in enhancing service ac-
cess, workforce participation, and educational opportunities for the
D/HH community, marking a significant step towards increased au-
tonomy across all societal aspects. For example, 1) Service Access:
enable private communication with healthcare providers or cus-
tomer service without interpreters; 2) Education: facilitate equal
access to lectures through real-time ASL interpretations and re-
sponses; 3) Emergency Communication: provide life-saving com-
munication with first responders during crises.
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